Multiparental Mapping of Plant Height and Flowering Time QTL in Partially Isogenic Sorghum Families
نویسندگان
چکیده
Sorghum varieties suitable for grain production at temperate latitudes show dwarfism and photoperiod insensitivity, both of which are controlled by a small number of loci with large effects. We studied the genetic control of plant height and flowering time in five sorghum families (A-E), each derived from a cross between a tropical line and a partially isogenic line carrying introgressions derived from a common, temperate-adapted donor. A total of 724 F2:3 lines were phenotyped in temperate and tropical environments for plant height and flowering time and scored at 9139 SNPs using genotyping-by-sequencing. Biparental mapping was compared with multiparental mapping in different subsets of families (AB, ABC, ABCD, and ABCDE) using both a GWAS approach, which fit each QTL as a single effect across all families, and using a joint linkage approach, which fit QTL effects as nested within families. GWAS using all families (ABCDE) performed best at the cloned Dw3 locus, whereas joint linkage using all families performed best at the cloned Ma1 locus. Both multiparental approaches yielded apparently synthetic associations due to genetic heterogeneity and were highly dependent on the subset of families used. Comparison of all mapping approaches suggests that a GA2-oxidase underlies Dw1, and that a mir172a gene underlies a Dw1-linked flowering time QTL.
منابع مشابه
Genetic Mapping of the Leaf Number above the Primary Ear and Its Relationship with Plant Height and Flowering Time in Maize
The leaf number above the primary ear (LA) is a major contributing factor to plant architecture in maize. The yield of leafy maize, which has extra LA compared to normal maize, is higher than normal maize in some regions. One major concern is that increasing LA may be accompanied by increased plant height and/or flowering time. Using an F2:3 population comprising 192 families derived from a lea...
متن کاملIncreased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population
Adaptation of domesticated species to diverse agroclimatic regions has led to abundant trait diversity. However, the resulting population structure and genetic heterogeneity confounds association mapping of adaptive traits. To address this challenge in sorghum [Sorghum bicolor (L.) Moench]-a widely adapted cereal crop-we developed a nested association mapping (NAM) population using 10 diverse g...
متن کاملComparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population.
Correspondence among QTLs affecting height and/or flowering was investigated across the five races of sorghum, an interspecific sorghum F2 population, and 32 previously published sorghum, maize, rice, wheat, and barley populations revealing 185 QTLs or discrete mutants. Among nine QTLs mapped in the interspecific sorghum population (six affecting height and three affecting flowering), at least ...
متن کاملGenetic Mapping of Blooming Time in ‘Marcona’ × ‘Fragness’ Population with Using Molecular Markers
Flowering time is an important horticultural trait in almond since it is essential to avoid the late frosts that affect production in early flowering cultivars. Evaluation of this complex trait is a long process because of the prolonged juvenile period of trees and the influence of environmental conditions affecting gene expression year by year. In this research flowering time was studied in an...
متن کاملGenetic Control and Comparative Genomic Analysis of Flowering Time in Setaria (Poaceae)
We report the first study on the genetic control of flowering in Setaria, a panicoid grass closely related to switchgrass, and in the same subfamily as maize and sorghum. A recombinant inbred line mapping population derived from a cross between domesticated Setaria italica (foxtail millet) and its wild relative Setaria viridis (green millet), was grown in eight trials with varying environmental...
متن کامل